Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(5): 645-648, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759553

RESUMO

In the first and limiting step of nitrification, ammonia (NH3) is oxidised to nitrite (NO2-) by the action of some prokaryotes, including bacteria of the Nitrosomonas genus. A potential approach to nitrification inhibition would be through the application of phages, but until now this method has been unexplored and no virulent phages that infect nitrifying bacteria have been described. In this study, we report the isolation of the first phage infecting some Nitrosomonas species. This polyvalent virulent phage (named ΦNF-1) infected Nitrosomonas europaea, Nitrosomonas communis, and Nitrosomonas nitrosa. Phage ΦNF-1 has the morphology of the Podoviridae family, a dsDNA genome of 41,596 bp and a 45.1 % GC content, with 50 predicted open reading frames. Phage ΦNF-1 was found to inhibit bacterial growth and reduce NH4+ consumption in the phage-treated cultures. The application of phages as biocontrol agents could be a useful strategy for nitrification inhibition without the restrictions associated with chemical inhibitors.


Assuntos
Bacteriófagos , Nitrosomonas europaea , Bacteriófagos/genética , Nitrosomonas , Bactérias , Nitritos , Amônia
2.
Chemosphere ; 239: 124814, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31527003

RESUMO

The increasing use of zinc oxide nanoparticles (ZnO NPs) in agriculture renders it necessary to evaluate their impact on soil non-target organisms. This work studies Zn availability to earthworms from the ZnO (NP and bulk) applied to two agricultural soils with a different pH at 20, 225, 500, and 1000 mg Zn kg-1. Zn uptakes and the effects on Eisenia andrei, grown under controlled conditions, were determined. Effects were assessed at three levels: organisms, mortality, growth and reproduction; biochemical, catalase and glutathione S-transferase activities, malondialdehyde (MDA), and protein content; cellular in coelomocytes, reactive oxygen species (ROS) generation, lysosomal membrane alterations (RN) and mitochondrial dysfunction (MTT). Available Zn was 100-fold higher in acidic than in calcareous soil and did not differ among ZnO (NP or bulk). Zn in worms was auto-regulated regardless of the soil Zn concentration, pH and ZnO size. Effects on mortality and weight were observed only in the acidic soil at the highest concentration, ZnO NPs reduced survival and body weight, while ZnO bulk reduced body weight. Reproduction parameters in acidic soil were: EC50 (fecundity) 277 and 256 mg Zn kg-1 and EC50 (fertility) 177 and 179 mg Zn kg-1 for ZnO NPs and bulk, respectively, with no found NP-specific effects. No responses of enzymatic activities, MDA and MTT were detected. ROS and RN were altered in the coelomocyte cells of earthworms in the two soils, but effects depended on ZnO size suggesting nanospecific effects. Soil pH governs toxicity more than ZnO size regardless of body Zn concentration.


Assuntos
Agricultura , Nanopartículas/química , Oligoquetos/efeitos dos fármacos , Solo/química , Óxido de Zinco/química , Zinco/farmacocinética , Animais , Peso Corporal/efeitos dos fármacos , Enzimas/metabolismo , Concentração de Íons de Hidrogênio , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Taxa de Sobrevida , Zinco/química , Zinco/toxicidade , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...